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Abstract—In this paper an accurate analytical method is pro-

posed to compute the maximum inrush currents for single-phase 

transformers. The worst case scenarios for inrush currents 

caused by switching at the voltage zero crossing with the highest 

possible residual flux are investigated. Hysteresis is modeled with 

piece-wise linear approximations. Hence, it is assumed that the 

transformer is always operating on linear sections of the magnet-

izing curve. The maximum inrush current is computed with sim-

ple steps from the solution of the linear governing differential 

equations. The method is simple and thus suitable to be included 

in the transformer design program (or even using a calculator). 

Comprehensive studies are carried out to evaluate the proposed 

method versus laboratory measurements and EMTP simulations. 

Results indicate a significant improvement from published for-

mulae in the literature. The principal advantages of the technique 

are its accuracy and simplicity. A step-by-step numerical exam-

ple illustrates how easy it is to estimate the maximum inrush cur-

rents. 

 
Index Terms—Inrush currents, phase-hop, transformers. 

I.  NOMENCLATURE 

t [s] Time 

θ [rad] Switching angle 

Vm [volts] Peak of the voltage 

Vrms [volts] rms voltage 

ω [rad/s] Angular frequency 

λ [Wb] Magnetic flux linkages 

λ0 [Wb] Residual flux 

λs [Wb] Saturation flux  

λn [Wb] Nominal magnetic flux (Vm/ω) 

B [T] Magnetic flux density 

B0 [T] Flux density corresponding to λ0 

Bs [T] Flux density corresponding to λs 

Bn [T] Flux density corresponding to λn 

L [H] Transformer magnetizing inductance 

Lsc [H] Short circuit inductance of network 

L
’
s [H] Saturation inductance 

Ls [H] Lsc+ L
’
s 

L
’
m [H] Magnetizing inductance below the knee point 

Lm [H] Lsc+ L
’
m 
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Rsc [Ω] Short circuit resistance of the network  

RT [Ω] Transformer winding resistance 

R [Ω] Total resistance (R=Rsc+RT) 

A [m
2
] Cross sectional area of the flux path 

N Number of turns 

T [s] Power frequency period 

II.  INTRODUCTION 

NRUSH currents associated with power transformer ener-

gization have the potential to produce mechanical stresses 

on the windings, damage insulation, generate harmonic distor-

tion in power systems, create voltage sags, and cause malfunc-

tion of differential protection relays. Hence, it is necessary to 

predict the most severe inrush currents for the proper coordi-

nation of protection devices, to prevent power outages, and to 

avoid possible damages. 

Several analytical formulae are available in the literature 

for the calculation of inrush currents during transformer ener-

gization [1]-[16]. Some are developed to predict this phenom-

enon for single-phase units [1]-[11] and some others are espe-

cially derived for three-phase transformers [12]-[16]. In all of 

them, assumptions are made to obtain simple-to-use formulae. 

For example, some references neglect the terminal resistance 

for simplifications [1]-[5], which is not an appropriate approx-

imation especially for small transformers with higher re-

sistance values or for transformers with small saturation in-

ductance (frequently called “air-core” inductance). A small 

saturation inductance causes higher inrush currents and there-

fore the voltage drop in the winding resistances becomes sig-

nificant. For higher inrush currents the difference between the 

terminal voltage and the internal (linking) voltage of the trans-

former increases. Therefore, computation of the incremental 

flux linkages by integration of the terminal voltage creates 

crucial errors. Simulation results presented in the paper show 

the importance of the proper calculation of the flux linkages. 

Some references include the leakage inductance in the 

equivalent circuit for inrush current calculation [12]-[14]. 

However, the highest inrush currents happen when the trans-

former is open circuited [1]-[16]. In this condition, the current 

in the secondary winding is zero. Therefore, interaction be-

tween the magnetic field of the primary and the secondary 

winding does not exist and the leakage inductance is meaning-

less [17], [18]. Leakage inductance is a quantity defined for 

two windings and is not involved in no-load normal operation 
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or transients, such as open circuit inrush current. 

The worst cases for inrush currents happen when the core 

has residual flux and the switching occurs at the instant of 

voltage zero-crossing with a polarity that increases the flux 

linkages in the core. This paper proposes an analytical method 

to estimate the amplitude of these cases considering the max-

imum possible residual flux in the core. This is done with a 

step-by-step routine and the closed-form solution of the differ-

ential equations of the transformer equivalent electrical circuit. 

Two types of transformers are investigated: a toroidal-type 

transformer and a standard shell-type transformer. The worst 

case of inrush current (considering the initial flux) is comput-

ed and then compared versus simulations and the methods of 

references [9]-[11]. Reference [11] proposes the following 

formula for the maximum inrush currents: 
 

𝐼𝑚𝑎𝑥 =
𝑉𝑚

√(𝜔𝐿𝑠
′ )2 + 𝑅2

 (1 + cos 𝜃 +
𝜆0 − 𝜆𝑠

𝜆𝑛

)             

 

This formula is similar to the equation presented in [9] 

when substituting λ=N×B×A and θ=0 to calculate the worst 

case of inrush current as a function of the magnetic flux densi-

ty: 
 

𝐼𝑚𝑎𝑥 =
√2𝑉𝑟𝑚𝑠

√(𝜔𝐿𝑠
′ )2 + 𝑅2

 (
2𝐵𝑛 + 𝐵0 − 𝐵𝑠

𝐵𝑛

)                    

 

and the Schwartz formula is as follows [10]: 
 

𝐼𝑚𝑎𝑥 =
𝑉𝑚

𝜔(𝐿𝑠
′ + 𝐿𝑠𝑐)

 (2 +
𝜔(𝜆0 − 𝜆𝑠)

𝑉𝑚

)                     

 

The latter formula neglects the winding resistance. This as-

sumption in some cases may result in errors especially for 

smaller transformers. The method of this paper estimates in-

rush currents for magnetized core transformers with high pre-

cision for different hysteretic shapes. The analytical calcula-

tions are supported with laboratory measurements and validat-

ed EMTP simulations. The required transformer parameters 

are derived from 3D finite element simulations and standard 

laboratory measurements. 

III.  ANALYTICAL SOLUTIONS FOR THE WORST CASE 

SCENARIOS OF MAGNETIZING INRUSH CURRENTS 

There are two severe cases of inrush currents, both happen 

when the switching occurs at the voltage zero-crossing mo-

ment of the voltage waveform. The amplitude of inrush cur-

rents depends on the initial flux trapped in the core. The flux 

linkages change according to the pre-re-energization operating 

condition of the transformer. In the case of a transformer com-

pletely disconnected from the source, and open circuited, the 

current of the terminal becomes exactly zero. Therefore, the 

operating point on the magnetizing characteristic moves to the 

λ axis (zero current and with maximum remnant flux λr1 (see 

Fig. 1)). Therefore, the first worst case scenario is the energiz-

ation of the transformer at the moment of voltage zero cross-

ing with initial flux of λr1, and with a polarity of the voltage in 

the direction that builds up the flux linkages. This case, which 

is called “first peak” of inrush current hereafter is very well-

known among power engineers [1]-[16].   

In this paper another inrush current phenomenon, which 

produces larger amplitudes, is also analyzed. When there is a 

fault on the primary side, the transformer is not disconnected 

from the source. This situation can be modeled with a short 

circuit on the primary. As the result, the terminal current will 

not suddenly reach zero and will keep circuiting in the primary 

winding. Therefore, magnetic flux will be trapped in the core 

for a period of time depending on the total resistance and in-

ductance of the system. The operating point in some cases 

may stay on the saturated section of the magnetizing curve, 

such as λr2 (in Fig. 1). This residual flux is higher than λr1 and 

as a result the transformer draws larger inrush currents after 

fault clearance or re-energization. This condition is valid for 

the single-phase transformers studied in this paper. For three 

phase units or for units connected to inductive/capacitive 

loads, the secondary voltage impacts the core flux linkages. 

Nevertheless, the worst case happens when the magnetic flux 

is trapped in the magnetic core.  Although this condition is 

known by power engineers, it has not received the attention it 

deserves. Recently a few studies have been carried out to un-

derstand the phenomenon at the moment of voltage recovery 

after sags or interruptions [19]-[23]. A comprehensive study 

on this phenomenon and its other possible causes is presented 

in [24]; the word “phase-hop” was coined for this situation. 
  

 
Fig. 1. Hysteresis cycle of shell-type- and toroidal-core 1 kVA transformers, 
and the highest possible cases of residual flux. 

 

In conclusion, the worst case scenarios are switchings at the 

instant of voltage zero-crossing with a polarity that increases 

the flux linkages in the core. In the case of transformer with 

positive residual flux as shown in Fig. 1 zero crossing on the 

transition between negative to positive polarity leads to maxi-

mum flux linkages.  

A.  First Peak of Inrush Currents 

This subsection investigates the highest possible peak of in-

rush currents. The test setup is depicted in Fig. 2:  

Vs

N1:N2
Rsc  Sw RT

i(t)

Vi (t)

Lsc

 
 

Fig. 2. Equivalent circuit of the system in the open circuit condition. 

According to the principle of duality, the iron core trans-

former in low frequencies can be represented with a hysteretic 
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inductor in parallel with a linear resistor [25]. The resistor has 

a substantially high resistance that represents the iron losses. 

Validated EMTP simulations demonstrated that this resistor 

does not affect the inrush currents significantly and could be 

neglected [11]. The behavior of the iron core is hysteretic. In 

this paper, this characteristic is linearized for different trans-

former operation regions. Accordingly, the calculation of in-

rush current is carried out in sequential steps. In each step, the 

nonlinearities are estimated with linear approximations. Note 

that the current, the voltage and the flux linkages vary with 

time. These parameters calculated at the end of each step are 

used as the initial conditions for the next step. The steps are 

numbered consecutively to clearly describe the computational 

procedure. 

Fig. 3 presents the terminal current, terminal voltage, inter-

nal voltage (Vi), and the flux linkages during the inrush current 

and the phase-hop conditions. One can observe that phase-hop 

happens after two consecutive peaks of voltage. This phenom-

enon and its causes are explained in the next section. The 

equivalent electrical circuits of the system during the first and 

the second peaks of inrush currents are presented in Fig. 4(a) 

and Fig. 4(b), respectively.  

The first peak of inrush current is computed in two steps. 

The first step starts at t=0 and ends with point (1) indicated in 

Fig. 3. The starting point of the second step is point (1) and the 

ending point is (2).  

 

 
            (a) 

 
           (b) 

Fig. 3. Two consecutive transients; (a) inrush and phase-hop currents, voltage 

of the source, and voltage of the magnetizing branch (Vi), (b) Magnetic flux 

linkages. 
 

1) Step 1: 

After the switch is closed at t=0 (see Fig. 2), the electrical 

circuit can be represented by Fig. 4(a). Note that, L represents 

the total inductance of the system (transformer hysteretic in-

ductance plus the system Lsc). The hysteretic inductance is 

approximated with two slopes L
’
m below the knee point (nor-

mal operating region), and L
’
s for the saturation region. Note 

that, the IEC definition to identify the knee point is used, 

which is defined as the intersection of the two lines (the non-

saturated and saturated lines of the exciting curve) [26]. Pa-

rameter L
’
m is measured with the standard open circuit test 

[27], and L
’
s the saturation inductance, can be measured with a 

non-ideal rectifier source [28]. Finally the two-slope inductor 

presented in Fig. 5 is obtained as Lm=Lsc+L
’
m and Ls=Lsc+L

’
s. 

The error due to this approximation may be reduced using 

more slopes. However, comprehensive EMTP simulation stud-

ies show that a two-slope magnetizing branch is able to predict 

the inrush currents with acceptable engineering accuracy (of 

about 5%) [29]. This can be also concluded from the calcula-

tion results presented in the next sections.  

The following differential equation can be written for the 

circuit of Fig. 4(a): 

𝑣𝑠(𝑡) =  𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅 𝑖(𝑡)                                 (1) 

 

where Vs=Vm sin(ωt+θ). The solution of (1) is:  

 

𝑖(𝑡) =
𝑉𝑚(𝑅 sin(𝜔𝑡) − 𝜔𝐿 cos(𝜔𝑡))

(𝑅2 + (𝜔𝐿)2)
+ 

(𝑖(𝑡𝑖) −
𝑉𝑚(𝑅 sin(𝜔𝑡𝑖) − 𝜔𝐿 cos(𝜔𝑡𝑖))

(𝑅2 + (𝜔𝐿)2)
) 𝑒−

𝑅(𝑡−𝑡𝑖)
𝐿           (2) 

 

where θ = 0° to calculate the largest inrush currents. Equation 

(2) is used several times in the paper for the different operat-

ing regions. The proper initial conditions need to be selected 

for each region. In this equation, ti is the initial time and i(ti) is 

the corresponding initial current in each step.  
 

Vs

R=Rsc+RT

L

R=Rsc+RT

L

(a) (b)

i(t) i(t)

 
 

Fig. 4. Simplified circuits of Fig. 2 for various instants of inrush current. 
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Fig. 5. Hysteretic inductance of the system represented with piecewise linear 

approximations by two constant slopes. The numbers correspond to different 

instants (see Fig. 3).  
 

The maximum inrush current happens when the initial flux 

is at the maximum level and the transformer is energized at 
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𝑖(𝑡𝑝𝑘) = 𝐼1𝑒
−

𝑅(𝑡𝑝𝑘−𝑡1)

𝐿𝑠 +

𝑉𝑚𝑅 [sin(𝜔𝑡𝑝𝑘) −sin(𝜔𝑡1)𝑒
−

𝑅(𝑡𝑝𝑘−𝑡1)

𝐿𝑠 ] + 𝑉𝑚𝜔𝐿𝑠 [cos(𝜔𝑡1)𝑒
−

𝑅(𝑡𝑝𝑘−𝑡1)

𝐿𝑠 − cos(𝜔𝑡𝑝𝑘)]

𝑅2 + (𝜔𝐿𝑠)2
                                                (10) 

𝑉𝑚 sin(𝜔𝑡𝑝𝑘) − 𝑅𝐼1𝑒
−

𝑅(𝑡𝑝𝑘−𝑡1)

𝐿𝑠 −

𝑉𝑚𝑅2 [sin(𝜔𝑡𝑝𝑘) −sin(𝜔𝑡1)𝑒
−

𝑅(𝑡𝑝𝑘−𝑡1)

𝐿𝑠 ] + 𝑉𝑚𝑅𝜔𝐿𝑠 [cos(𝜔𝑡1)𝑒
−

𝑅(𝑡𝑝𝑘−𝑡1)

𝐿𝑠 − cos(𝜔𝑡𝑝𝑘)]

𝑅2 + (𝜔𝐿𝑠)2
= 0                     (11) 

flux linkages. It is assumed that the transformer is disconnect-

ed from the source before energization. Thus, at instant t=0, 

current is zero and initial flux is at its positive maximum λ0= 

λr1 (see Figs. 1 and 5). The voltage source is switched on at 

zero crossing going to positive polarity. Thus, the operating 

point moves up on the hysteresis curve. The slope of this line 

is Lm. The instant of saturation could be characterized with 

current I1 at time t1. Hence, parameter t1 is defined for the time 

spent going from the origin to the saturation point. This pa-

rameter could be calculated with respect to the flux linkages 

λ(t1) at t1, 
 

𝜆(𝑡1) = ∫ 𝑉𝑖(𝑡) 𝑑𝑡 + 𝜆0

𝑡1

0

                      (3) 

 

The terminal current when operating below the knee point 

(IEC definition) is very small in open circuit; therefore, the 

voltage drop over the winding resistance is neglected to sim-

plify the equations. This can be concluded from Fig. 3 where 

the terminal and internal voltages are superimposed, 

 

𝜆(𝑡1) ≈ ∫ 𝑉𝑠(𝑡)  𝑑𝑡 + 𝜆0                         (4)
𝑡1

0

 

 

From Fig. 5, λ(t1)= λs, hence, the solution of (4) gives: 

 
𝑉𝑚

𝜔
[cos(𝜔𝑡1 + 𝜃) −cos𝜃] = 𝜆0 − 𝜆𝑠                (5) 

 

Considering the switching angle θ = 0° as discussed, 

 

𝑡1 =
arccos [

(𝜆0 − 𝜆𝑠)𝜔
𝑉𝑚

+ 1]

𝜔
                        (6) 

 

where λ0 and λs are extracted from the magnetizing character-

istic given by the transformer manufacturer or measured in the 

laboratory. Finally, the current at the saturating point i(t1) is 

calculated by substituting t=t1 and L=Lm in (2) where ti = 0, 

yielding: 
 

𝑖(𝑡1) = 𝐼1

=
𝑉𝑚 [𝑅 sin(𝜔𝑡1) − 𝜔𝐿𝑚 cos(𝜔𝑡1)+𝜔𝐿𝑚𝑒

−
𝑅𝑡1
𝐿𝑚 ]

𝑅2 + (𝜔𝐿𝑚)2
                (7) 

 

2) Step 2: 

The peak of the inrush current corresponds to the moment 

where the internal voltage Vi is zero (see point 2 in Fig. 3). 

This is so because the incremental flux rises while Vi is posi-

tive. Thus, the peak time (tpk) can be calculated by solving the 

following equation: 

 

𝑉𝑖 = 𝑉𝑚 sin(𝜔𝑡𝑝𝑘) −  𝑅𝑖(𝑡𝑝𝑘) =  0                  (8) 

 

The expression for the current in this region is obtained 

from (2), where ti=t1, L=Ls, and i(ti)= I1=i(t1). This corresponds 

to the region between points 1 to 2 of Fig. 5: 

 

𝑖(𝑡) =
𝑉𝑚(𝑅 sin(𝜔𝑡) − 𝜔𝐿𝑠 cos(𝜔𝑡))

(𝑅2 + (𝜔𝐿𝑠)2)
+ 

(𝑖(𝑡1) −
𝑉𝑚(𝑅 sin(𝜔𝑡1) − 𝜔𝐿𝑠 cos(𝜔𝑡1))

(𝑅2 + (𝜔𝐿𝑠)2)
) 𝑒

−
𝑅(𝑡−𝑡1)

𝐿𝑠           (9) 

 

Substituting (7) into (9) and tpk, (10) is obtained (see bot-

tom of the page). Then, (10) is substituted into (8) giving (11), 

also at the bottom of the page. The solution of (11) gives tpk. 

This non-linear equation can be solved with the embedded 

Matlab function ‘solve’. However, simple linear and quadratic 

polynomial approximations are derived for this equation in 

Section IV to further simplify the calculations. To calculate 

the first peak of inrush current, tpk is then substituted into (10). 

Therefore, the maximum peak of the inrush current could be 

calculated following 4 simple steps: 

 

1. Calculate t1 from (6) 

2. Calculate I1 from (7) 

3. Calculate tpk from (11) or (32) 

4. Calculate i(tpk) from (10) 
 

B.  Phase-Hop Currents 

The phase-hop phenomenon was first introduced in [24]. 

This condition is usually seen during the mal-operation of off-

line UPS systems, voltage sags, interruptions, and notching of 

voltage [24]. The transient currents produced by phase-hop are 

more severe than the zero crossing inrush currents. Therefore, 

to protect the power transformers and other power system 

pieces of equipment, it is necessary to estimate the maximum 

value of the phase-hop current.  

The worst case of phase-hop occurs when the transformer 

iron core has the residual flux λ0=λr1, and the energization 

happens at the zero crossing instant of voltage. Suppose that 

the transformer is energized for half a cycle and then the 

source is lost for the next half cycle. In this time interval, the 

voltage at the source terminal is zero. If the voltage recovers at 

the next zero crossing, two consecutive peaks of voltage with 

the same polarity (as shown in Fig. 3) are imposed to the 
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transformer. This raises the incremental flux to the highest 

possible value, and consequently the highest peak of phase-

hop current occurs. The phase-hop phenomenon is shown in 

Fig. 3. A comprehensive study on phase-hop, its causes, and 

its disruptive effects is presented in [24].  

The most frequent cause of the phase-hop currents are volt-

age sags. The common voltage sags have depths between 80-

90%. This means that a negative voltage appears at the termi-

nal for the second half cycle. The amplitude of the negative 

voltage (between points 3 and 5) reduces the residual flux 

trapped in the iron core and consequently reduces the magni-

tude of the phase-hop current. Hence, the worst case of phase-

hop happens when there is a solid fault at the terminals of the 

transformer for a half cycle (sag with 100% depth); see Fig. 3. 

In this subsection, an analytical solution is presented to es-

timate the worst case of phase-hop current. According to the 

above explanations, the worst case of the phase-hop current 

occurs half a period after the zero-crossing inrush. This means 

that two consecutive voltage semi-cycles with the same polari-

ty are applied to the transformer terminals. Therefore, to com-

pute the peak value of this phenomenon, the two first steps 

described in the previous section are required.  

  

3) Step 3: 

The voltage applied to the terminals of transformer is illus-

trated in Fig. 3. In the transition between points 2 and 3 of Fig. 

3, Vi is negative. Therefore, the flux linkages decrease in this 

period. The objective is to find the current and flux linkages at 

the end of the first half period (I3, λ3). Equation (2) is utilized 

to calculate I3 with ti=t1, i(ti)=I1=i(t1), L=Ls, and t=T/2. The 

reason to substitute t=T/2 is that point 3 is located at half a 

period after the switching instant, thus we have: 

 

𝐼3 =
𝑉𝑚 (𝑅 sin (

𝜔𝑇
2

) − 𝜔𝐿𝑠 cos (
𝜔𝑇
2

))

(𝑅2 + (𝜔𝐿𝑠)2)
+ 

(
𝑉𝑚 [𝑅 sin(𝜔𝑡1) − 𝜔𝐿𝑚 cos(𝜔𝑡1)+𝜔𝐿𝑚𝑒

−
𝑅𝑡1
𝐿𝑚 ]

𝑅2 + (𝜔𝐿𝑚)2
 

−
𝑉𝑚(𝑅 sin(𝜔𝑡1) − 𝜔𝐿𝑠 cos(𝜔𝑡1))

(𝑅2 + (𝜔𝐿𝑠)2)
) 𝑒

−
𝑅(

𝑇
2

−𝑡1)

𝐿𝑠                     (12) 

  

Assuming the worst case, when the operating point is still 

in the region representing the high saturated core (Ls), the flux 

linkages can be calculated by: 

 

 𝜆3 = 𝜆𝑠 + ∆𝜆 = 𝜆𝑠 + 𝐿𝑠 (𝐼3 − 𝐼1)               (13) 

 

4) Step 4 

Step 4, investigates the transition between points 3 and 4. 

The objective is to compute the time, current, and flux linkag-

es magnitude corresponding to point 4. In this time interval, 

the power source is lost. Therefore, the voltage is zero. As the 

result, current and flux linkages continue decreasing and the 

operating point moves down to point 4 of Fig. 5. The equiva-

lent circuit in this condition is depicted in Fig. 4(b). The corre-

sponding differential equation is written as: 

 

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖(𝑡) =  0                                (14) 

 

The solution of (14) is as follows: 

  

𝑖(𝑡) = 𝐼𝑒− 
𝑅(𝑡−𝑡𝑖)

𝐿                               (15) 

 

In this condition, the flux linkages could be calculated by 

taking the integral of Ri(t), where the expression for i(t) is 

given in (15). The values calculated in step 3 are substituted in 

(15) as initial conditions, I=I3 and ti =T/2, yielding: 

 

∆𝜆 = 𝜆4 − 𝜆3 = ∫ 𝑅𝑖(𝑡) 𝑑𝑡 =
𝑡4

𝑡3

∫ 𝑅𝐼3𝑒
− 

𝑅(𝑡−𝑇/2)
𝐿𝑠  𝑑𝑡 

𝑡4

𝑇/2

(16) 

 

Thus, (16) is solved for t to find the time at point 4 (t4): 

  

𝑡4 =
𝑇

2
−

𝐿𝑠

𝑅
ln (1 +

𝜆4 − 𝜆3

𝐿𝑠 𝐼3

)                         (17) 

 

where λ4=λs (see Fig. 5) and λ3 is calculated in the previous 

step. 

5) Step 5: 

In step 5, the flux linkages at the end of the first period 

(point 5) are calculated. This is done by integrating over the 

term Ri(t) where i(t) could be substituted from (15) with pa-

rameters I=I4=I1, ti=t4, L=Lm, and t=T/2. 

 

∆𝜆 = 𝜆5 − 𝜆4 = ∫ 𝑅𝑖(𝑡)𝑑𝑡 =
𝑡5

𝑡4

∫ 𝑅𝐼4𝑒
− 

𝑅(𝑡−𝑡4)
𝐿𝑚 𝑑𝑡 

𝑇

𝑡4

    (18) 

 

Therefore, 

𝜆5 = (𝐼4𝐿𝑚 + 𝜆0)𝑒
−

𝑅(𝑇−𝑡4)
𝐿𝑚                        (19) 

 

The current at this point is calculated by interpolation using 

the slope of the magnetizing line under the knee point (Lm): 

 

∆𝜆 = 𝜆5 − 𝜆𝑠 = 𝐿𝑚(𝐼5 − 𝐼4) ⇒                                      

𝐼5 =
𝜆5 − 𝜆𝑠 + 𝐼4𝐿𝑚

𝐿𝑚

                           (20) 

 

6) Step 6: 

In step 6, the transition between point 5 and point 6 hap-

pens. Here, the transition time is neglected. Therefore, the 

current could be estimated by (see Fig. 5): 

 

𝐼6 = 𝐼5 + 2𝐼0                               (21) 

 

Thus, 

 

𝜆6 = 𝜆5 + ∆𝜆 = 𝜆5 + 𝐿𝑠(𝐼6 − 𝐼5) = 𝜆5 + 2𝐿𝑠𝐼0       (22) 
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𝑖(𝑡𝑝𝑘) = (𝐼1 +
2𝜆0

𝐿𝑚
)𝑒

−
𝑅(𝑡𝑝𝑘−𝑡7)

𝐿𝑠 +

𝑉𝑚𝑅 [sin(𝜔𝑡𝑝𝑘) −sin(𝜔𝑡7)𝑒
−

𝑅(𝑡𝑝𝑘−𝑡7)

𝐿𝑠 ] + 𝑉𝑚𝜔𝐿𝑠 [cos(𝜔𝑡7)𝑒
−

𝑅(𝑡𝑝𝑘−𝑡7)

𝐿𝑠 − cos(𝜔𝑡𝑝𝑘)]

𝑅2 + (𝜔𝐿𝑠)2
                                       (27)  

  

𝑉𝑚 sin(𝜔𝑡𝑝𝑘) −  𝑅(𝐼1 +
2𝜆0

𝐿𝑚
)𝑒

−
𝑅(𝑡𝑝𝑘−𝑡7)

𝐿𝑠 −

𝑉𝑚𝑅2 [sin(𝜔𝑡𝑝𝑘) −sin(𝜔𝑡7)𝑒
−

𝑅(𝑡𝑝𝑘−𝑡7)

𝐿𝑠 ] + 𝑉𝑚𝑅𝜔𝐿𝑠 [cos(𝜔𝑡7)𝑒
−

𝑅(𝑡𝑝𝑘−𝑡7)

𝐿𝑠 − cos(𝜔𝑡𝑝𝑘)]

𝑅2 + (𝜔𝐿𝑠)2
= 0      (28) 

𝑡7 =
arccos [

𝑉𝑚 + 𝜔[(𝐼1𝐿𝑚 + 𝜆0)𝑒
−

𝑅(
𝑇
2+

𝐿𝑠
𝑅 ln(1+

𝜆𝑠−𝜆3
𝐿𝑠 𝐼3

))

𝐿𝑚 − 𝜆𝑠]
𝑉𝑚

]

𝜔
                                                                                                                                          (29) 

It should be noted that at point 6, the equivalent circuit 

changes to the one in Fig. 4(a). 

 

7) Step 7: 

 In step 7, the current in point 7 is estimated by (see Fig. 5): 

 

𝐼7 = 𝐼1 + 2𝐼0 = 𝐼1 +
2𝜆0

𝐿𝑚

                                 (23) 

 

Knowing the current I7 at saturation point 7, the corre-

sponding flux linkages could be calculated by: 

 

𝜆7 = 𝐿𝑚(𝐼7 − 𝐼6) + 𝜆6 =  𝐿𝑚(𝐼1 + 2𝐼0 − 𝐼6) + 𝜆6      (24) 

 

Substituting (21) into (24) yields: 

 

𝜆7 =  𝐿𝑚(𝐼1 − 𝐼5) + 𝜆6                     (25) 

 

8) Step 8: 

The last step is the transition from point 6 to 7 to 8. The 

operating point moves with a pattern similar to the pattern 

seen in the transition between points 0 to 2 of Step 1 (see Figs. 

3 and 5). Therefore, the same procedure is used, but with dif-

ferent parameters, which means calculating t7 with the follow-

ing expression: 

𝑡7 =
arccos [

(𝜆6 − 𝜆7)𝜔
𝑉𝑚

+ 1]

𝜔
                        (26) 

 

This is so because parameters λ0 and λs are substituted by λ6 

and λ7 in (26). The peak current of phase-hop corresponds to 

the moment that the electromotive force through the winding 

is zero (see point 8 in Fig. 3). Thus, the peak time tpk could be 

calculated by solving (8). The expression for current in this 

region is obtained from (2), where ti=t7, L=Ls, and 

i(ti)=i(t7)=I7. Consequently, tpk could be substituted in the cur-

rent expression to get the maximum phase-hop current. There-

fore, tpk and i(tpk) are derived as (27) and (28). Equation (27) is 

non-linear and can be solved with the embedded Matlab func-

tion ‘solve’. However, simple polynomial approximations are 

derived for this equation in the next section. Equation (26) can 

be rewritten in the form of (29) using (25), (20), (19) and (17). 

In summary the highest peak of the phase-hop current can be 

calculated in 7 steps as (the first two are the same as for the 

first peak of inrush currents): 

 

1. Calculate t1 from (6) 

2. Calculate I1 from (7) 

3. Calculate I3 from (12) 

4. Calculate λ3 from (13) 

5. Calculate t7 from (29) 

6. Calculate tpk from (28) or (30) 

7. Calculate i(tpk) from (27) 

IV.  TAYLOR SERIES EXPANSION OF (11) AND (28) FOR THE 

ANALYTICAL CALCULATION OF TPK  

The most important step to calculate the first and second 

peaks of inrush current described above is to accurately com-

pute the peak time (tpk). However, (11) and (28) are non-linear 

equations which require numerical iterative solvers. Exhaus-

tive simulation studies show that the peak of the currents is 

near the peak of the voltage wave, at π/4 (see Fig. 3(a)). This 

corresponds to a quarter of the period (T/4). Therefore, second 

and third order Taylor series expansions of (11) and (28) are 

obtained at tpk=T/4. This results in linear and quadratic poly-

nomial equations, respectively. 

The linear polynomial approximation of (11) is as follows: 

 

𝐴𝑡𝑝𝑘 + 𝐵 = 0                               (30) 

 

where A and B are computed from: 

 
 

𝐴 = 𝐾1 𝜔cos (
𝜔𝑇

4
) − 𝐾3𝜔 sin (

𝜔𝑇

4
) −

𝐾2𝑅

𝐿𝑠

𝑒
−

𝑅𝑇
4𝐿𝑠 

𝐵 = 𝐾3 [
𝜔𝑇

4
sin (

𝜔𝑇

4
) + cos (

𝜔𝑇

4
)] + 𝐾2𝑒

−
𝑅𝑇
4𝐿𝑠 [1 +

𝑅𝑇

4𝐿𝑠

]

+ 𝐾1 [sin (
𝜔𝑇

4
) −

𝜔𝑇

4
cos (

𝜔𝑇

4
)]            (31) 

 

 

The quadratic polynomial approximation of (11) is: 

 
 

𝐴𝑡𝑝𝑘
2 +𝐵𝑡𝑝𝑘 + 𝐶 = 0                             (32)                            

where: 

  

𝐴 =
𝐾2𝑅2

2𝐿𝑠
2

𝑒
− 

𝑅𝑇
4𝐿𝑠 −

𝐾3𝜔2

2
cos (

𝜔𝑇

4
) −

𝐾1𝜔2

2
sin (

𝜔𝑇

4
) 
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𝐵 = 𝐾1 [𝜔cos (
𝜔𝑇

4
) +

𝜔2𝑇

4
sin (

𝜔𝑇

4
)] − 𝐾2𝑒

− 
𝑅𝑇
4𝐿𝑠 [

𝑅

𝐿𝑠

+
𝑅2𝑇

4𝐿𝑠
2

]

− 𝐾3 [𝜔 sin (
𝜔𝑇

4
) −

𝜔2𝑇

4
cos (

𝜔𝑇

4
)] 

𝐶 = 𝐾3 [
𝜔𝑇

4
sin (

𝜔𝑇

4
) + (1 −

𝜔2𝑇2

32
) cos (

𝜔𝑇

4
)]

− 𝐾1 [
𝜔𝑇

4
cos (

𝜔𝑇

4
) + (

𝜔2𝑇2

32
− 1) sin (

𝜔𝑇

4
)]

+ 𝐾2𝑒
− 

𝑅𝑇
4𝐿𝑠 [1 +

𝑅𝑇

4𝐿𝑠

+
𝑅2𝑇2

32𝐿𝑠
2

]                      (33) 

with: 

 

𝐾1 = 𝑉𝑚𝜔2𝐿𝑠
2 

𝐾2 = 𝑒
𝑅𝑡1
𝐿𝑠 [−𝑅𝐼1(𝑅2 + 𝜔2𝐿𝑠

2) + 𝑉𝑚𝑅2 sin(𝜔𝑡1)

− 𝑉𝑚𝑅𝜔𝐿𝑠cos(𝜔𝑡1)]                                  (34) 

𝐾3 = 𝑉𝑚𝑅𝜔𝐿𝑠 

 

The linear and quadratic approximations of (28) are similar 

to (30) and (32). The only difference is parameter K2: 

 

𝐾2 = 𝑒
𝑅𝑡7
𝐿𝑠 [−𝑅 ( 𝐼1 +

2𝜆0

𝐿𝑚

) (𝑅2 + 𝜔2𝐿𝑠
2) + 𝑉𝑚𝑅2 sin(𝜔𝑡7)

− 𝑉𝑚𝑅𝜔𝐿𝑠 cos(𝜔𝑡7)]                                (35) 

 

Note that, the absolute value of tpk from (30) and (32) is 

used for the calculation of i(tpk). 

V.  CASE STUDIES AND CALCULATION RESULTS  

Two transformers (T1, T2) are selected to validate the cal-

culations; T1 is a 1 kVA, four winding, standard, shell-type 

transformer and T2 is a 1 kVA, toroidal type transformer.  

Currently, there are two basic arrangements for the iron-

cores used to build distribution transformers: (1) in the shell-

type, a continuously wound core is cut and wrapped around 

the windings a few laminations at a time; (2) in the core-type, 

cores are assembled by stacking laminations and the trans-

former is completed by sliding pre-made coils. As a conse-

quence, both arrangements of the finished core are left with 

undesired air pockets between two stacked lamination pieces.  

An alternative construction, not yet very common, is to use 

a core made of a continuous steel strip that is wound into a 

doughnut shape (toroid) and then wrapped entirely in coils. 

Therefore, for a toroidal geometry the core has a gapless con-

struction with extremely low no-load losses. We are working 

to produce a distribution utility-grade toroidal core transform-

er [30]-[32]. The special construction of toroidal transformers 

leads to sharp and narrow hysteresis curve. Therefore, the re-

sidual flux after disconnection from the source is usually high-

er when compared to standard transformers. Also, the slopes 

of the magnetizing curve below the knee point and in deep 

saturation are different from the standard transformer. Because 

as we discussed, the standard transformer iron core has air 

pockets with equivalent linear reluctances that are along the 

flux path. 

The difference is illustrated by comparison of two types of 

transformer hysteresis cycles in Fig. 1. The flat hysteresis cy-

cle usually results in higher residual flux λ0 after disconnection 

of the transformer from the source.  

The worst cases of inrush and phase-hop currents happen 

when the transformer has residual flux. Reversible transient 

models [17], [18] are developed and used as the reference for 

validation of the calculated results. The transient models are 

first tested and validated with the comparison of the inrush 

and phase-hop currents versus laboratory measurements when 

the core is demagnetized (see Tables I and II). The results pre-

sented in Tables I and II show that the transient simulations 

(using the EMTP) are reliable for further studies. 

 
TABLE I 

FIRST PEAK OF INRUSH CURRENT: MEASUREMENTS VERSUS TRANSIENT 

(EMTP) SIMULATIONS FOR THE DEMAGNETIZED CORE 

 Winding Measurements Simulations Difference (%) 

T1 

1 157.7 162.5 3.04 

2 130.4 134.5 3.14 

3 125.2 122.3 -2.32 

4 123.1 111.1 -9.75 

T2 1 325.0 334.9 3.04 

 
TABLE II 

PHASE-HOP: MEASUREMENTS VERSUS TRANSIENT (EMTP) SIMULATIONS 

FOR THE DEMAGNETIZED CORE 

 Winding Measurements Simulations Difference (%) 

T1 

1 328.9 330.2 0.39 

2 291.3 272.4 -6.48 

3 261.7 252.5 -3.51 

4 240.5 238.4 -0.87 

T2 1 490.0 481.9 -1.6 

 

The worst case of inrush currents is computed and com-

pared versus simulations and the equations from references 

[9]-[11]. All parameter values such as initial flux are consid-

ered similar for the analytical methods and computer simula-

tions in order to have a fair comparison. Table III presents the 

first peak of inrush current. In this table, the peak time tpk is 

calculated with three different methods; the exact (11), linear 

approximation (30), and quadratic approximation (32) formu-

las. The relative errors indicate that the analytical approach 

results of this paper are superior to the methods of [9]-[11]. 

However, the errors of the linear approximation formula (se-

cond order Taylor expansion) are not acceptable. Thus, the 

quadratic approximation (32) is recommended for the calcula-

tion of the first peak.  

Methods of the references [9]-[11] show differences higher 

than 30% for some of the windings of the standard type trans-

formers. Additionally, these methods have higher errors for 

toroidal transformers. The reason is that in the aforementioned 

methods the incremental flux is calculated with the integration 

of the terminal voltage rather than the internal voltage (emf). 

Therefore, the peak time (tpk) which is the crucial factor for the 

calculation of the peak of inrush current is not estimated pre-

cisely. 

The methods of [9]-[11] are suitable for large power trans-

formers (transmission system level) that have small winding 

resistance. However, they may show errors for medium-size 

(distribution system level), or small-size transformers.    

Table IV presents the calculation results for the phase-hop 
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TABLE III 
HIGHEST PEAK OF INRUSH CURRENT: CALCULATIONS VERSUS EMTP SIMULATIONS AND OTHER METHODS 

 Winding 
Simulations 

(Reference) 

[9], 

[11] 

Diff. 

(%) 
[10] 

Diff. 

(%) 
Analytical 

Exact (11) 

Diff. 

(%) 

Analytical 

Appr. (30) 

Diff. 

(%) 
Analytical 

Appr. (32) 

Diff. 

(%) 

T1 

1 201.7 256.5 27.2 546.1 170.7 218.2 8.2 147.1 -27.1 194.6 -3.5 

2 168.9 210.6 24.7 414.4 145.3 175.9 4.1 129.7 -19.4 167.6 -0.8 

3 155.8 193.2 24.0 329.5 111.4 156.3 0.3 132.6 -11.5 151.6 -2.1 

4 142.2 178.4 25.5 271.0   90.5 141.2 -0.7 131.8 -5.2 138.0 -2.1 

T2 1 475.1 829.1 74.5 2627.0 452.9 477.6 0.5 477.4   1.1 477.6 1.2 

 

TABLE IV 

WORST CASE OF PHASE-HOP: CALCULATIONS VERSUS EMTP SIMULATIONS 

 Winding 
Simulations 

(Reference) 

Analytical 

Exact (28) 

Diff. 

(%) 

Analytical 

Appr. (30) 
Diff. 

(%) 

Analytical 

Appr. (32) 

Diff. 

(%) 

T1 

1 330.5 350.1 5.9 349.6 5.8 350.1 5.9 

2 272.8 288.7 5.8 287.9 5.5 288.7 5.8 

3 253.1 268.5 6.0 266.6 5.3 268.5 6.0 

4 239.4 253.0 5.7 248.7 3.9 253.1 5.7 

T2 1 481.9 485.3 0.7 485.3 0.7 485.3 0.7 
 

current. The analytical solutions of this paper are compared 

with EMTP simulations. The peak time tpk is obtained by the 

three formulae; the exact (11), linear approximation (30), and 

quadratic approximation (32). One can observe a very good 

agreement between all three methods and EMTP simulations 

with relative errors near 5%. The phase-hop current peak hap-

pens at the vicinity of the voltage wave peak (see Fig. 3(a)). 

Thus, the linear approximation is accurate enough for phase-

hop current calculations. 

It is worth mentioning that up until now there is no other 

method for the calculation of the phase-hop currents for com-

parison purposes. The analytical formulas for this transient 

current are presented in this paper for the first time.  

Simulation and calculation results show that the first peak 

of inrush is more sensitive to the residual flux, while the 

phase-hop current does not change significantly when the iron 

core has residual flux. 

A parametric study is carried out to evaluate the impact of 

the source impedance on the estimation of the maximum in-

rush currents. The source impedance is varied from 0.01 pu to 

0.1 pu for X/R ratios of 1, 5, 10, and 100. The calculation re-

sults are presented in Fig 6. Results show that the peak of in-

rush current is very sensitive to the source impedance. How-

ever, the relative ratio of the reactance and resistance of the 

source does not affect the results.  

 

 
Fig. 6. Sensitivity analysis of the maximum inrush currents with respect to the 

source impedance variations.  

VI.  NUMERICAL EXAMPLE 

In this section, the calculation results for the inrush and 

phase-hop currents for the second winding of T1 are present-

ed. The required data is presented in Table V. For this exam-

ple, measurements are carried out in a low voltage laboratory 

and therefore, the short circuit inductance (Lsc) is negligible. 

The total resistance is R=Rsc+RT =0.1+0.443=0.543 Ω.  

The objective is to calculate the first and second peaks of 

inrush current with (10) and (27), respectively. For this, pa-

rameter tpk needs to be obtained from (32) or (30). Equation 

(30) is accurate enough to calculate tpk for the second peak 

(phase-hop current). However, (32) needs to be used to calcu-

late tpk for the first peak of inrush current.  

From (31), (33), (34) and (35) one can observe that the pa-

rameters K, A, B, and C are functions of R, ω, Ls, T, Vm, λ0, Lm, 

t1, I1, and t7. Parameters R, ω, Ls, T, Vm, λ0, Lm are known, and 

t1, I1, and t7 can be calculated with (6), (7), and (29), respec-

tively. Also, t7, I3 and λ3 are retained from (12) and (13), re-

spectively. Having these parameters, the next step is to calcu-

late K1, K2, and K3: 

1) To calculate the first peak, K1, K2, and K3 should be de-

termined from (34). Then, these three parameters are sub-

stituted into (33) to get A, B, and C required for solving 

the quadratic equation (32).  

2) To calculate the second peak (phase-hop), K1 and K3 are 

calculated from (34), and K2 is calculated from (35). Then, 

these three parameters are substituted into (31) to get A 

and B required for solving the linear equation (30). 

The step by step calculations including the corresponding 

formulae are summarized in Tables VI and VII. The calcula-

tion of the first peak of inrush and the phase-hop currents re-

quire 10 and 12 individual steps, respectively. One can ob-

serve that the calculation of the parameters in several steps is 

simple and straight forward.  

VII.  CONCLUSIONS 

An enhanced method for the calculation of the maximum 

inrush currents of power transformers during the energization 

was proposed. First, the method was applied to compute the 

inrush currents caused by zero crossing switching with maxi-

mum residual flux in the iron core (worst case scenario). Then, 

the method was extended to the calculation of phase-hop cur-

rents. The calculations for both inrush and phase-hop currents 

0.02 0.04 0.06 0.08 0.10.01

50

100

150

200

Z [pu]

In
ru

sh
 C

u
rr

en
t 

[A
]

 

 

X/R=1

X/R=5

X/R=10

X/R=100

X/R=1

X/R=5
X/R=10

X/R=100



0885-8977 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPWRD.2015.2443560, IEEE Transactions on Power Delivery

 9 

 

TABLE VI 

STEP BY STEP CALCULATIONS OF THE FIRST PEAK OF INRUSH 

Step 1 2 3 4 5 6 7 8 9 10 

Parameter t1 [ms] I1 [A] K1 K2 K3 A B C tpk [ms] i(tpk) [A] 

Equation (6) (7) (34) (34) (34) (33) (33) (33) (32) (10) 

Inrush 4.86 1.46 18.4 1,317.9 31.2 17,466,901 -216,117 707.6 6.4 167.6 

 
TABLE VII 

STEP BY STEP CALCULATIONS OF THE PHASE-HOP CURRENT 

Step 1 2 3 4 5 6 7 8 9 10 11 12 

Parameter t1 [ms] I1 [A] I3 [A] λ3 [Wb] t7 [ms] K1 K2 K3 A B tpk [ms] i(tpk) [A] 

Equation (6) (7) (12) (13) (29) (34) (35) (34) (31) (31) (30) (27) 

Phase-Hop 4.86 1.46 114.9 0.796 0.24 18.4 -31.1 31.2 -10,385 59.5 5.73 287.9 
 

were compared with the transient simulations, laboratory 

measurements, and three widely-used formulas. Results indi-

cate that the method of this paper is more accurate than the 

previously published formulas. 

The method presented in the paper is simple to use by en-

gineers in the field to estimate the maximum possible inrush 

currents with high accuracy without using circuit simulation 

programs. The method can be easily implemented in the de-

sign programs since it is suitable for spread sheets and even 

calculators. 

This paper only deals with single-phase transformers. It is 

believed that the same analytical method could be applied to a 

duality derived equivalent circuit for large three-phase trans-

formers. Analytical formulae to calculate the maximum inrush 

and phase-hop currents for three-phase transformers would be 

presented in an upcoming paper.  

 
TABLE V 

DATA FOR THE SECOND WINDING OF T1 

Vm [V] R [Ω] Lm [H] Ls [H] 
λ0 

[Wb.] 

λs 

[Wb.] 
I0  [A] f [Hz] 

179.5 0.543 0.411 0.00085 0.1 0.7 0.1 60 
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